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Ultrafast diffraction of tightly focused waves with
spatiotemporal stabilization
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Experimental studies of ultrafast beam shaping have come about from the need to compensate diffraction-
induced dispersive effects in femtosecond laser beams. From a theoretical point of view, chromatic matching of
diffracted spherical waves in the vicinity of the geometrical focus is attained by applying conveniently disper-
sive boundary conditions in the far-field zone, a subject thoroughly analyzed in the paraxial regime. For ap-
plications demanding high spatial resolution, however, high-numerical-aperture microscope objectives may be
employed instead and would lead to nonparaxiality of the focal wavefields. These circumstances have moti-
vated our investigation. Concretely we report on prerequisites for spectral invariance extended to wide-angle
geometries, which provides stabilization of the spatiotemporal response in the Fourier plane. In this context,
general boundary conditions are given in the frame of the Debye representation of wavefields. Features of this
sort of dynamic apodization (spatial filtering) leading to perfect achromatization are described in detail.
© 2008 Optical Society of America
OCIS codes: 260.1960, 320.7120.
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. INTRODUCTION
hen a monochromatic, uniform, paraxial focused wave

s observed in the transverse plane containing the geo-
etrical focus, the diffracted pattern traces an Airy disk

f magnitude proportional to the wavelength. Such dis-
ersive character at the Fourier plane is associated with a
ondispersive truncation of the focused beam, leading to
ff-axis effects such as spectral anomalies [1–4] and pulse
plitting in the form of delayed boundary waves [5]. In ad-
ition, if the spherical beam is modulated periodically by
eans of a diffraction grating or any other rigid device ex-

iting a given spatial frequency, the central point of the
ight spot moves outward from the axis following a linear
ependence upon the wavelength. This radial chromatic
berration is of relevance in material processing [6–9]
nd multifocal microscopy [10,11], where the spatiotem-
oral resolution power may be strongly reduced for off-
xis foci.
This sort of spatial mismatching encountered in broad-

and radiation is also widely analyzed both theoretically
12–15] and experimentally [16] in diffraction of ultrafast
ollimated beams launched over hard-edge apertures.
ere we give emphasis to a paper of Heyman and
elamed [17] where, apart of analyzing the space-time

volution of such radiated wavefields, they suggest an
iso-diffracting” scheme providing directivity to the
ulsed radiation. A nondispersive spatial distribution of
he diffracted field along the direction of propagation is
onditioned by maintaining the same collimating distance
or all spectral constituents of the field, which is achieved
y source shaping in space and time simultaneously
18,19]. Some authors have even extended this idea to
0740-3224/08/091449-9/$15.00 © 2
ropose diffraction-free Bessel beams with isodiffracting
ehavior [20]. All these cases have in common that the
eld is dynamically resized at the “aperture” input plane.
Along the same lines, the possibility of generating a

ulsed wave with a prescribed performance from a dy-
amic aperture antenna was addressed by Shaarawi
21,22]. He investigated various illumination schemes of
ynamic apertures to generate localized wavefields (X
aves and focus wave modes). All are causally launchable

rom flat apertures characterized by having time-
ependent radii. We point out that finite-time dynamic
ources are not purely academic exercises but may be syn-
hesized experimentally. Dispersive imaging is a particu-
arly attractive procedure [23–26] exploiting the fine-
unable wavelength response of zone plates.

In this paper we advance in the subject of directional
hromatic compensation of diffracted fields based on a
ontrollable spectral mismatch of the source size in the
perture plane. In particular, the achromatization strat-
gy is released over the transverse focal plane of the dif-
racted spherical wave. We consider focal beams that are
ree of longitudinal chromatic aberration in order to ac-
ount for diffraction-driven chromatic compensation ex-
lusively. Thus, we give a general description of non-
araxial focal waves exhibiting an isodiffracting
ehavior—not along the optical axis but in the Fourier
lane—also coined as in-plane isodiffracting (IPID) waves
n [24]. From a theoretical point of view, this scheme is of
reat interest in optical imaging, since point spread func-
ions (also resolving power) would be independent upon
avelength. Assuming that a nondispersive high-
umerical-aperture objective lens is in charge of produc-
008 Optical Society of America
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ng the IPID focused beam, we provide the necessary
pace-frequency dynamics of the field at the entrance pu-
il plane.

. NONDISPERSIVE INTERFERENCE:
SODIFFRACTING WAVES
n this section we establish the role of the angular spec-
rum dispersion in the spatial patterning of propagating
aves, illustrated with the following simple example of

nterference. Consider two oblique, polychromatic, plane
aves of equal strength. The wavevector of each spectral

omponent is denoted by kp, for p= �1,2�, being �kp�=k.
ere the wavenumber

k��� =
�n���

c
, �1�

here � is the angular frequency, n stands for the index
f refraction of the dielectric medium where beam propa-
ation is experienced, and c is the speed of light in
acuum. The interference field is proportional to

exp�ikzR�cos�ktR�, �2�

here R is a 3D vector denoting the spatial coordinates of
he observation point, and

kz =
k1 + k2

2
�3�

kt =
k1 − k2

2
�4�

re perpendicular vectors of modulus kz=k cos � and kt
k sin �, respectively (shown in Fig. 1.) Along the direc-

ion of kz, each monochromatic component of the wave su-
erposition behaves like an homogeneous wave propagat-
ng at a superluminal phase velocity vp=c /n cos �.
ontrarily, a standing wave is found in the transverse di-
ection, where kt gives the spatial frequency of the inter-
erence fringes.

In the presently existing broadband problem, we con-
ider a convenient combination of this sort of interfering
ave having different frequencies. Commonly, the angle

���=� is conserved under a change of frequency, as sche-
atically shown in Fig. 1(a). In the transverse direction—

imed by kt—the contrast of the interference fringes is re-
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ig. 1. (Color online) Left column: Schematic representation (a)
f 2D X waves and (b) wavefields with transverse isodiffracting
ehavior. (c) Angular dispersion of a 2D TID wave of kt
6.8 �m−1 propagating in vacuum.
uced at points increasingly far from the origin due to the
ispersive character of the spatial frequency kt���
k���sin �. For temporally coherent sources, this effect

eads to the onset of stationary, spatiotemporal localized
waves [27,28].
However, high contrast around not only a central point

ut also far off-axis may be required. In this sense, trans-
erse isodiffracting (TID) wavefields have the particular
roperty of conserving kt for all the spectral components,
raphically illustrated in Fig. 1(b), thus guaranteeing the
aximum interference contrast in spite of bandwidth. We

oint out that TID waves are recognized as a 2D version
f the so-called pulsed Bessel beams [29–31]. Spectral
ocking of kt is accomplished at the cost of angular disper-
ion, expressed as

���� = arcsin� k0

k���
sin �0� , �5�

here the subindex 0 stands for the specific value at-
ained at the frequency �0. Moreover, angular dispersion
f paraxial waves ���1� in vacuum is reduced to ����
�0�0 /� following a well-known inverse law. Obviously,

nvariance of kt induces a dispersion effect onto the axial
avevector kz, which may be not dispersed angularly;
nly its modulus

kz = �k2��� − kt
2 �6�

epends on �. Particularly, homogeneous (not evanescent)
ID wavefunctions are achieved under the constraint

kt��k���, which may bring serious restrictions onto the
ource bandwidth. In Fig. 1(c) we represent the angular
eviation ���� of TID waves propagating in vacuum at
t=6.8 �m−1. We observe that � reaches a maximum
alue of 90 deg for a frequency 2.04 fs−1, and it cannot
ave real values for redder spectral components.
Let us underline some relevant features of the �3

1�D dynamics of the TID pulsed wavefields given above.
n the time domain, the wavefunction is described by the
ntegral representation

cos�ktr� 	 
S���
cos�kz���z − �t + �����d�,

here �r ,z�=R denotes the transverse �r� and axial �z� co-
rdinates, and S stands for the complex spectral ampli-
ude (of argument �) evaluated at �R�=0. The cut-off fre-
uency �c satisfies k��c�=kt, which gives the low-band
oundary where one finds imaginary values of kz���. In
ur analysis, we conveniently impose that S���=0 for �
�c. In the input plane z=0, both S��� and the waveform

f the pulse are conserved except for an inversion at nega-
ive values of cos�ktr� [32,33]. Similarly, at points of any
ther transverse plane the TID field possesses the same
pectrum (normalized to its maximum value) but dis-
orted from S and, therefore, time evolution is mimeti-
ally reproduced over the entire plane. We consider as il-
ustration the following numerical example. We assume a
oisson-type spectrum,
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S���� = ����0�s exp�− ���0�, �7�

or ��=�−�c�0 and S����=0 if ��	0. The parameters
0=28 fs and s=8 provide a pulse form of carrier (mean)
requency �0=2.36 fs−1 and a quasi-Gaussian envelope
rofile of width 
t=9.6 fs (at which the envelope intensity
rops to 1/e). Pulse propagation is evaluated in vacuum
or a TID wave of invariant kt=6.8 �m−1, for which a cut-
ff frequency �c=2.04 fs−1 is found. For comparison, we
dditionally consider a 2D X wave such that, for the car-
ier frequency, the transverse wavevector coincides with
hat of the TID field �k0 sin �=kt� giving �=59.8 deg. In
ig. 2 we plot the amplitude 
E
 of (a) the X wave and (b)
he TID wave in the meridian plane y=0 for the instant
=0; note that kt of both pulsed waves is considered to
ave a vector component of modulus zero along the y axis.
e evidence that spatial localization of the X wave is ob-

erved perpendicularly to the constituents k1 and k2, re-
pectively, in planes tilted at angles ±�� /2−�� from x=0.
owever, an optimum contrast of the interference fringes

s produced in transverse planes for the TID wave, show-
ng a high intensity around z=0 at t=0.

To conclude this section, let us extend our analysis to
ccount for more complex beams consisting of combina-
ions of broadband TID beams, each one with a character-
stic kt but all having the same amplitude spectrum S���
t a given transverse plane; for instance at z=0. In this
articular plane, the diffraction pattern of the composite
avefield is invariant—except maybe for a constant
mplitude—under a change of frequency. This case is
ommonly encountered in diffraction of polychromatic
ight passing through an aperture. In this context, Hey-

an et al. [17] coined the term iso-width aperture to refer
o the exit pupil of optical systems launching this sort of
adiation pattern. In transverse planes where z�0, the
omplex spectral modifier exp�ikz���z� alters differently
he spectrum of each TID component, since kz is itself dif-
erent. Additionally, a noncoincident spatial frequency of
he interference fringes associated with each TID compo-
ent leads to a distinct modification of the spectrum at
ifferent points in a given transverse plane. As a conse-
uence, a spatial dispersion is induced in out-of-plane
avefields; such an effect is widely reported in the litera-

ure for bell-shaped optical waves. For instance, a Gauss-
an beam of width a�z� independent of the frequency at
=0 propagates in vacuum in such a way that
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ig. 2. (Color online) Instantaneous amplitude 
E�x ,z�
 of (a) a
D X wave and (b) a TID wavefield, where the carrier frequency
0=2.36 fs−1, the pulse width is 9.6 fs, and the angular deviation
�� �=59.8 deg.
0
a�z� =�a2�0� +
4c2z2

a2�0��2 �8�

aries spectrally for z�0. Therefore, such a combination
oes not represent a new TID wave and, as much, we may
peak of beams with isodiffracting behavior in the privi-
eged plane z=0, or simply IPID beams.

. FOCALIZATION WITH RIGID
PERTURING AND FILTERING
efore analyzing under which conditions chromatic in-
ariance of focal wavefields may be achieved, in this sec-
ion we give relevant aspects of broadband wave focaliza-
ion with particular emphasis on diffraction-induced off-
xis effects. Let us describe a general focused field in
erms of the Debye representation

Ẽ�R,�� =
− ik���

2�
	 Ẽ0��,��exp�ik���R�d�. �9�

he integral representation of the field as formulated
ere is appropriate in our theoretical analysis, since it
onsiders a superposition of plane waves denoting Ẽ0 the
trength of its constituents. In Eq. (9) � stands for a solid
ngle and therefore

d� = sin �d�d�, �10�

here � is the polar angle from the z axis with 0��
� /2, as shown in Fig. 3, and � is the azimuthal angle in

he transverse r plane with 0��	2�.
Under the Debye approximation, if a uniform, broad-

and, plane wave is focused by an achromatic objective
ens, the focal wavefield is free of angular dispersion
23,34]. This property remains when the incident plane
ave is additionally apertured by hard-edge apodizing

creens or, in general, modulated by any rigid (nondisper-
ive) diffracting element if its characteristic spatial spec-
rum has a band distribution that is sufficiently low.
hese sort of focal wave are coined as iso-angular-
pectrum (IAS) beams elsewhere [24]. In this particular
ase, a factorization of the form

ig. 3. (Color online) Schematic depiction of an off-axis focused
ave. Induced by diffraction, plane-wave constituents are phase-
atched at Poff, a point placed at the transverse r= �x ,y� plane.
onsidering the function F�q� of Eq. (21), a point Poff would be

ound at a distance 
 /k0qm from the origin, together with an-
ther one symmetrically arranged along the x axis.
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Ẽ0��,�� = S���P��� �11�

s allowed, where S represents the amplitude spectrum of
he incident beam and P gives the forward-propagating
eld evaluated over the convergent spherical wavefront
eyond the focal region,

Ẽ�R,�� →
kR�1

S���P���
exp�− ikR�

R
�z 	 0�, �12�

hich is coincident for each spectral component. For con-
enience we tentatively write

P��� = iF�kt/k�cos �, �13�

here

cos � =
kz

k
�14�

erves the function of an obliquity factor, and

kt = �kx,ky� = k sin ��cos �,sin �� �15�

ives the relationship between the transverse wavevector
t and the angular coordinates � and �. Here, we have
ade use of the (spatial) dispersion equation k2=ktkt
kz

2. Achromaticity of the azimuthal and the polar angles
rom the plane-wave constituents of the focused field
akes our choice in Eq. (13) fully compatible with the in-

ependence of the function P upon �.
For convenience, the Debye integral representation of

he focused wave given in Eq. (9) is expressed in the 2D
omain kt. After substitution of Eqs. (11) and (13) into Eq.
9) and using

d� = dkt/kkz, �16�

e have that the focal field is evaluated by

Ẽ�R,�� =
S���

2�k��� 	 F�kt/k�cos�ktr�exp�ikzz�dkt,

�17�

here kz=�k2−ktkt. In Eq. (17) we have assumed that F
s an even function, F�−kt /k�=F�kt /k�, so that the above-
iven integral is straightforwardly interpreted as a con-
inuous superposition of interference waves of the kind
hown in Eq. (2), providing 
F
2 the spectral intensity with
haracteristic kt. As analyzed in Section 2, we expect that
he dispersive character of k��� is extended over kt, which
ecreases the visibility of the interference fringes for each
ransverse spatial frequency and, therefore, reduces the
ontrast of the composite diffraction pattern in the trans-
erse direction. As a consequence, a strong spatiotempo-
al spreading of the focused pulse may be anticipated.

In our study we are particularly concerned with the
patial-temporal evolution of the spherical wave in its fo-
al plane. Therefore, we consider the diffracted field in
q. (17) at z=0, giving

Ẽ�r,�� = k���S���G�k���r�, �18�

here
G��� = �2��−1	 F�q�exp�iq��dq �19�

s the 2D Fourier transform of F. Except for an external
actor, G provides the diffraction pattern for every spec-
ral constituent of the field, which is affected by a
requency-dependent lateral magnification k−1���. Obvi-
usly, the magnification of the wavefield is inversely pro-
ortional to � in vacuum as, for instance, in the way it is
ound in the Airy disk when F represents a binary circu-
ar function. We point out that, in a general case, not only
s the diffracted field spatially dispersed in the focal
lane, but—also as a consequence—the amplitude spec-
rum changes locally; this is a feature also observed in
ut-of-focus planes [2]. At points sufficiently close to the
ptical axis where G�kr�→G�0�, the wave form is propor-
ional to the real part of

	 k���S���exp�− i�t�d�, �20�

eglecting the carrier phase [29] exp�i arg�G�0���. In non-
ispersive media, the spectrum is proportional to �S���
emonstraating a well-known time-derivative behavior
35]. On the contrary, G varies rapidly at points suffi-
iently far from the geometrical focus, which provokes
tretching—and ultimately splitting—of the pulse [5].

To illustrate the dispersion-induced decrease of spa-
iotemporal resolution in the focal plane of an IAS wave,
e examine the function

F�q� = cos�
qx/qm�circ�q/qm�, �21�

here q= �qx ,qy� of modulus

q = �qx
2 + qy

2,

m and 
 are real positive constants, and circ��=1 if 
1 [otherwise circ��=0]. This particular F simulta-

eously considers diffraction onto a holographic-type
rating, which produces an equienergetic beam splitting,
ogether with beam aperturing of the collecting objective
ens. In this case, qm=sin � is interpreted as the numeri-
al aperture—in vacuum—of the focal wave. We perform
he 2D Fourier transform of Eq. (19) and obtain

G��� =
GD�� + �0� + GD�� − �0�

2
, �22�

here �0= �
 /qm ,0� and

GD��� =
qmJ1�qm��

�
. �23�

t �0, phase matching of plane-wave constituents is pro-
uced at two points found at a distance 
 /k0qm from the
rigin of the r plane (see Fig. 3). Obviously, spatial disper-
ion is better explored by selecting a grating of appropri-
te low frequency; if 
=1.22�, the distance between the
iffraction orders is twice the resolution limit following
he Rayleigh criterion.

Again, we performed numerical simulations with an
mplitude spectrum of the Poisson type and with param-
ters as those used in Fig. 2. Particularly, focal waves are
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mposed to have an angular aperture �=59.8 deg, which
s equivalent to imposing that a maximum value of kt
6.8 �m−1—ignoring the cos modulation—is reached at
0=2.36 fs−1. In Fig. 4 we plot the temporal behavior of

he focal field 
E
 along y=0. In Figs. 4(a) the geometrical
ocal point is surrounded at a short distance by the
iffraction-induced focal spots and, as a consequence, the
ispersion effects are negligible. By increasing either the
patial frequency of the grating or the number of diffrac-
ion orders, spots surge separately from the geometrical
ocal point where the dispersion effects are enhanced. To
ain a deeper insight into the spatiotemporal features of
ff-axis focusing, we conveniently employ the function

Foff�q� = exp�i�qx/qm�F�q�, �24�

hich accounts for a frequency increment of the spatial
odulation, thus producing a steering of the launched
ave outward of the optical axis. The 2D Fourier trans-

orm of Foff is

Goff��� = G�� − �off�, �25�

ith �off= �−� /qm ,0�. Therefore, Foff contemplates a lat-
ral shift of the pair of diffraction spots in terms of the
arameter �. In Figs. 4(b)–4(d) we observe that the pulse
longates and the focal spots become spatially indistin-
uishable for increasing �. We point out that the maxi-
um off-axis shift −� /k0qm=−11.3 �m is attained at �
20
 in the plot).

. MAXIMUM VISIBILITY OF FOURIER
ATTERNS: IPID FOCAL WAVES
ompensation of spatiotemporal dispersion effects associ-
ted with broadband beam focalization may be carried out
n the focal plane by spherical waves of the IPID type. In
ection 2 we established that IPID beams have a charac-
eristic plane wherein the diffracted field—here Ẽ�r ,�� at
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ig. 4. (Color online) Temporal dynamics of 
E
 in the focal plane
f IAS focal fields with off-axis parameter: (a) �=0, (b) �=5
, (c)
=10
, and (d) �=20
. Chromatic phase mismatching inducing

patio-temporal stretching (and subsequent attenuation) of the
eld grows as focalization is produced at points increasingly far

rom the optical axis.
=0—may be factorized into two functions: a first func-
ion with spatial independence and the other one being
pectrally invariant. In the focal plane, the isodiffracting
ondition explicitly given ahead in Eq. (27) is accom-
lished if the input field of the Debye integral represen-
ation may be written as

Ẽ0��,�� = iS���F�kt/k0�
kz���

k0
. �26�

e point out that this equation constitutes itself a bound-
ry condition of the wavefield. Therefore, Ẽ0 is modulated
y the time-domain spectrum S, the space-domain spec-
rum F, and the obliquity factor kz /k0. Specifically, the
pectrum of the beam launched over the focusing system
oes not necessarily correspond to the function S���, a
oint discussed in detail in Section 5. Furthermore, the
trength of the function F is maintained if the transverse
avevector kt is conserved, leading to a given angular
ispersion of the plane-wave constituents of the Debye in-
egral. Additionally, the obliquity factor considered here is
rbitrary, since the IPID condition is generally attained
hen such a term is multiplied by a given spatially inde-
endent function, for instance a power of k��� /k0.
To determine the focal field in z=0 we introduce Eq.

26) into Eq. (9) and we obtain

Ẽ�r,�� = k0S���G�k0r�, �27�

here Eqs. (16) and (19) have been employed. Focal fields
gured by the function G are invariant under a change of
requency—apart from the factor S—and, as a conse-
uence, spectra at points of the focal plane are propor-
ional to the input spectrum S���. In the time domain,
uch a conservation of the spectrum leads to an invari-
nce of the pulse form. Importantly, if the spectrum S is a
eal and positive function, a bandwidth-limited pulse dy-
amic is observed simultaneously at every point of the fo-
al plane.

To illustrate the spatiotemporal behavior of these IPID
ocal waves, we again employ the function F�q� given in
q. (21). The 2D Fourier transform G is also the Airy-disk
oublet of Eqs. (22) and (23). In the numerical simulation
hown in Fig. 5, the (normalized) spatial frequency of the
eriodic modulation is 
=1.22�, kt=6.8 �m−1 is the maxi-
um value of the transverse wavenumber associated
ith a single unshifted focal beam, and the input spec-

rum is of the Poisson type as employed in Figs. 2–4.
omparatively, Fig. 5 shows a temporal dynamic resem-
ling that of Fig. 4(a), which corresponds to an IAS mul-
ifocal beam. As previously discussed, focalization of these
AS waves is being performed sufficiently close to the op-
ical axis that dispersive effects may be neglected. For
his reason, we consider again large displacements of the
ocal doublet far off the geometrical focus, addressed by
eans of the function Foff given in Eq. (24). When Foff sub-

titutes the spatial spectrum F of the IPID focal wave, the
emporal evolution of the pulse may be represented
raphically by the same Fig. 5 if we replace the spatial co-
rdinate x shown in the ordinate of the plot by
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x → x +
�

k0qm
. �28�

s expected, the spatiotemporal resolution of the multifo-
al beam remains invariant over any target area in the fo-
al plane.

Let us conclude our analysis with the pulse dynamics
n out-of-focus planes. We compare behaviors of IAS and
PID defocused waves to estimate in which measure
iffraction-induced dispersion may strike the resolution
ower along the propagation direction; observation at a
iven point in time may provide an “instantaneous” depth
f focus. Figure 6 explores the field 
E
 in the meridian
lane y=0 of the focal volume at t=0. In the case of IPID
aves—seen in Fig. 6(a) at �=20
—the instantaneous
epth of field remains invariant with respect to the on-
xis case �=0, demonstrating optimum 3D spatial reso-
ution. Contrarily, the IAS wave shown in Fig. 6(b) is not
nly unable to resolve the diffraction doublet but exhibits
substantially increased depth of field. In this respect we
oint out that, except for IPID waves, the reduction of the
xial resolution is intensified as moving further from the
ptical axis, so that the instantaneous depth of field gen-
rally becomes a shift-variant feature of ultrashort focal
aves.

. DYNAMIC ENTRANCE PUPIL
ocal fields with an IPID response demonstrate that
iffraction-induced dispersion may be compensated. Thus
e have a capacity for rendering bandwidth-length pulses

imultaneously in the focal plane. With this goal the

-2

-1

0

1

2

-40 -20 0 20 40
t (fs)

x
(µ
m
)

0

1

ig. 5. (Color online) Time evolution of the IPID field 
E
 along
he grating pitch direction �y=0� of the focal plane.
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ig. 6. (Color online) Axial response of the instantaneous field
E
 at the local time t=0 for (a) an IPID wave and (b) an IAS fo-
used field, both at �=20
. The IAS wave undergoes a consider-
ble increment of the depth of field.
pherical wave is conveniently modulated beyond the fo-
al region in the form given in Eq. (26). Experimentally,
uch a modulation is commonly imprinted by optical ele-
ents placed in front of a microscope objective being in

harge of the beam focusing. Therefore, synthesis of IPID
ocused fields requires a description of the pulsed wave at
n input plane (entrance pupil plane for convenience) as
t impinges onto the focusing lens system.

For simplicity, we consider a collimated (and modu-
ated) beam launched over an infinity-corrected objective
ens. The diffracted field at the entrance pupil plane may
e written as

Ẽin�ri,�� = Sin���T��,ri�, �29�

here the spectrum Sin combines spatially independent
erms of the input field and, for convenience, we may im-
ose T�� ,0�=T��0 ,0�. The pattern T accounts for beam
ltering driven by diffracting optical elements—such as
patial light modulators and gratings—and aperturing
aused by the diffraction-limited objective lens. In par-
icular, the spectral dependence of T may be induced by
ree-space propagation [24], zone-plate-assisted imaging
26], and any other dispersive process. A magnified ver-
ion of Ẽin is reproduced at the exit pupil plane of the lens
ystem, where the focusing elements additionally produce

convergent spherical wavefront. In the way it is de-
cribed in Eq. (12), we may write the field at the exit pupil
lane as

Ẽout�R,�� = Ẽ0��,��
exp�− ikR�

R
, �30�

here R is the distance measured from the geometrical
ocus. Lossless focalization allows conservation of wave
nergy flux at the entrance and exit pupil planes provid-
ng the following ligature [36]:

	 
Sin���
2
T��,ri�
2dri =	 
Ẽ0��,��
2d�. �31�

y using Eqs. (16) and (26), the energy conservation law
nd the IPID condition are simultaneously fulfilled if

T��,ri� = i
S���

Sin���
�Jkz

kk0
2F�kt/k0�, �32�

here kt explicitly depends upon the plane coordinate ri
nd J is the determinant of the Jacobian matrix

��kt�

��ri�
= 

�kx

�xi

�kx

�yi

�ky

�xi

�ky

�yi

� . �33�

The relationship between ri and kt is brought by the
pecific characteristics of the focusing lens system, which
s commonly computed from ray tracing procedures. Con-
isely, a ray is first considered propagating parallel to the
ptical axis impinging upon a point at coordinates ri in
he entrance pupil plane. At the exit plane, such a ray has
ent its trajectory toward the focus pointing in the direc-
ion of the wavevector k, which is employed in the Debye
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epresentation (9) and has transverse coordinates kt. In
xisymmetric optical systems, ri and kt are contained in
he same meridian plane and, as a consequence, they are
arallel vectors satisfying rikt= ±rikt. Accordingly, ri and
t are suitably expressed in cylindrical coordinates so

hat the Jacobian determinant is reduced to

J =
��kt

2�

��ri
2�

. �34�

Interestingly, J�k2 for nondispersive focusing
lements—diffractive elements such as zone plates have a
haracteristic J that is invariant upon �—and we may
rite

T��,ri� = i
S���k���

Sin���k0
�J0 cos �

k0
2 F�kt/k0�, �35�

here J0 is the Jacobian determinant at the carrier fre-
uency. The first term depends exclusively upon the fre-
uency, providing how the input spectrum Sin is trans-
ormed into

S��� = − i�
k0

k���
Sin��� �36�

n the focal plane, where �=k0T��0 ,0� /�J0F�0�. These
pectral transformations have been analyzed in [24] in
ree-space paraxial propagation; when the medium is
ondispersive, k�� and we may observe an antideriva-
ive (integral) time response. Here we have included a
/2-shift of the carrier-envelope phase for convenience.
To illustrate our analysis, let us consider a nondisper-

ive infinity-corrected objective lens system that fulfills
he sine condition. From its characteristic ray projection
unction [37], ri / f=sin �, we obtain

ri

f
=

kt

k
, �37�

here f is the focal distance of the lens system. Since ri
nd kt are antiparallel for f�0, we may provide a vecto-
ial form of Eq. (37) giving

kt = −
k

f
ri. �38�

n this case, the Jacobian determinant is J=k2 / f2. Finally,
he input pattern T capable of generating an IPID re-
ponse in the focal plane of the objective lens may be ex-
ressed as

T��,ri� = �1 −
ri

2

f2�1/4

F�− ri/fM�, �39�

here an irrelevant factor � / f has been omitted and
here M���=k0 /k��� stands for a magnification param-

ter. The spectrally invariant fourth root is commonly as-
ociated with a rigid apodization, which may be per-
ormed by purely absorbing screens conveniently placed
t the entrance pupil plane. On the other hand, the wave-
unction F requires rescaling if the frequency is different
han �0. As a consequence, a given modulation of the in-
ut beam should be dynamically patterned at the input
lane of the objective lens following a geometric mapping
hat is governed by the dispersive magnification M.

We point out that rigid apodization surges in high-
umerical-aperture geometries imposed by the angular
ependence of the term Jkz. Obviously, we may get rid of
uch a rigid apodization if

Jkz =
k3

f2 . �40�

ote that such a constraint strictly holds within the
araxial approximation �kz→k�. When we solve the pre-
ious differential equation, conveniently expanded as

��kt
2�

��ri
2�

�k2 − kt
2 =

k3

f2 , �41�

e obtain a solution leading to the ray projection function

ri

f
=�2

3
�1 − �1 − �kt

k �
2�3/2

=�2

3
�1 − cos3 �.

�42�

nder the present conditions of focalization, the IPID be-
avior is achieved if the wavefield at the pupil plane re-
ponds exclusively to the appropriate dispersive mapping
f F.

To conclude, we reexamine the dynamic apodization of
PID focal waves in the paraxial regime, which has been
nvestigated elsewhere [23,24]. Specifically, the ray pro-
ection function approaches � so that Eq. (37) holds once
gain. In a low-numerical-aperture focalization ri� 
f

nd Eq. (39), providing the amplitude distribution at the
ntrance pupil plane reduces to

T��,ri� = F�− ri/fM�. �43�

n this respect, some approaches have been proposed in
he literature in order to achieve the required mapping in
ree-space propagation. Concretely, [26] exploits the less-
tringent constraint

d��M�

d�
= 0, �44�

mposed at �=�0. In nondispersive media, Eq. (44) leaves
���M��� spectrally stationary in the vicinity of the car-
ier frequency. This achromatic (first-order) solution gives
n appropriate IPID response at the focal plane for pulses
f narrow and moderate bandwidths.

. CONCLUSIONS
patiotemporal resolution in the Fourier plane of ul-
rashort focused beams is analyzed under boundary con-
itions capable to alter differently the “visibility” of such
olychromatic diffracted fields. When the visibility is
aximum we speak of an in-plane isodiffracting (IPID)

ehavior of the Fourier pattern, preventing from its com-
on centrosymmetric spectrally dependent magnification

hat ultimately is responsible for diffraction-induced chro-
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atic aberrations. In this case, ultrafast beam shaping is
erformed to provide a diffracted field fully free of disper-
ion effects.

In particular, diffraction-driven steering inducing off-
xis focalization associated with an IPID spherical wave
s produced not only with compensated angular disper-
ion but also conserves the extent of the diffraction pat-
ern corresponding to each spectral constituent of the
eld. In the frame of this model, the limit of resolution fol-

owing, for instance, the Rayleigh criterion is independent
f the wavelength. A convenient interpretation is given in
erms of dynamic apodization. Aperturing of a focused
PID wavefield is spectrally dispersed, and so the angular
pectrum, in the sense that numerical aperture conve-
iently changes at different frequencies to keep the focal
pot size unaltered.

At the entrance pupil plane, a given rigid (nondisper-
ive) apodization may be additionally imposed in order to
eet isodiffracting conditions in the focal plane. Such

igid apodization varies upon the ray projection function
ssociated with the focusing element. In fact, we give a
articular projection function for which rigid apodization
ay be ignored. Importantly, we have shown how the in-

ut waveform is transformed as the beam is delivered to
he focal plane. Concerning rigorously nondispersive lens
ystems, we have demonstrated that an antiderivative
aw is obeyed under IPID boundary conditions. Descrip-
ion of experimental procedures to attain such dynamic
patial filtering is out of the scope of this manuscript; nev-
rtheless, we give a list of references reporting on this
uestion.
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